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Reduction of three-dimensional (3D) description of diffusion in a tube of variable cross section to
an approximate one-dimensional (1D) description has been studied in detail previously only in tubes
of slowly varying diameter. Here we discuss an effective 1D description in the opposite limiting
case when the tube diameter changes abruptly, i.e., in a tube composed of any number of cylindrical
sections of different diameters. The key step of our approach is an approximate description of the
particle transitions between the wide and narrow parts of the tube as trapping by partially absorbing
boundaries with appropriately chosen trapping rates. Boundary homogenization is used to determine
the trapping rate for transitions from the wide part of the tube to the narrow one. This trapping rate
is then used in combination with the condition of detailed balance to find the trapping rate for
transitions in the opposite direction, from the narrow part of the tube to the wide one. Comparison
with numerical solution of the 3D diffusion equation allows us to test the approximate 1D
description and to establish the conditions of its applicability. We find that suggested 1D description
works quite well when the wide part of the tube is not too short, whereas the length of the narrow
part can be arbitrary. Taking advantage of this description in the problem of escape of diffusing
particle from a cylindrical cavity through a cylindrical tunnel we can lift restricting assumptions
accepted in earlier theories: We can consider the particle motion in the tunnel and in the cavity on
an equal footing, i.e., we can relax the assumption of fast intracavity relaxation used in all earlier
theories. As a consequence, the dependence of the escape kinetics on the particle initial position in
the system can be analyzed. Moreover, using the 1D description we can analyze the escape kinetics
at an arbitrary tunnel radius, whereas all earlier theories are based on the assumption that the tunnel

is narrow. © 2009 American Institute of Physics. [doi:10.1063/1.3271998]

I. INTRODUCTION

Diffusion in tubes of varying diameter is a long-standing
problem that has attracted researchers’ attention for many
years because such tubes are ubiquitous in nature and tech-
nology. Although it seems intuitively appealing to treat dif-
fusion in such a tube as effectively one-dimensional (1D),
the reduction to the 1D description is tricky. The simplest
approach leads to the Fick—Jacobs (F-J) equation for the ef-
fective 1D concentration of diffusing particles.1 This ap-
proach assumes uniform distribution of the particles over the
tube cross section. Zwanzig2 (Zw) showed that rigorous re-
duction to the F-J equation is possible only when the tube
radius r(x) is a slowly varying function of the x coordinate
measured along the centerline of the tube,
r'(x)=dr(x)/dx. He derived a generalized F-J equation,
in which the initial diffusion constant D was replaced by
a position-dependent diffusion coefficient D(x), which is
always smaller than D. Using r’'(x) as a small parameter
he found the following expression for D(x), Dg,(x)
=D/[1+(1/2)r'(x)?]. Later, Reguera and Rubi’ (R-R)
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suggested an improved expression for the position-dependent
diffusion coefficient Dy g(x)=D/+/1+r'(x)?, which reduces
to Dy, (x) when |r'(x)| < 1. Sophisticated analysis of the re-
duction to the effective 1D description performed by Kalinay
and Percus” has demonstrated that in general, simple, a la F-J
expression for the diffusive flux fails and should be replaced
by the expression that contains all higher derivatives of the
effective 1D concentration of diffusing particles. Numerical
test’ showed that generalized F-J equation with Dy g(x) pro-
vides a reasonably good 1D description of three-dimensional
(3D) diffusion in the tube when r(x) satisfies |r'(x)|=1 that
is a much weaker requirement than |r'(x)|<<1 initially sug-
gested by Zwanzig.2

In the present paper we discuss an effective 1D descrip-
tion of diffusion in the opposite limiting case when the tube
diameter changes abruptly as shown in Fig. 1, and r'(x) di-
verges at all points where the tube diameter makes a jump. In
this case the difficulties are associated with the formal de-
scription of transitions of the particles between the tube sec-
tions of different diameter. Within each of these sections the
particle motion is described by the free diffusion equation
with reflecting boundary condition on the tube wall. Solu-
tions to this equation have to be matched at the boundary
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FIG. 1. Schematic representation of a tube of abruptly changing diameter.

separating the two sections. This matching is the difficult
part of the problem. The point is that the fields of fluxes and
concentrations of diffusing particles, which are uniform over
the tube cross section sufficiently far away from the bound-
ary, near the boundary become nonuniform over the cross
section. As a consequence, sufficiently far away from the
boundary diffusion in the tube is essentially 1D, whereas
near the boundary one is faced with significant deviations
from the 1D behavior.

To overcome these difficulties we describe transitions of
the particles from one section to the other as trapping by
partially absorbing boundaries with properly chosen trapping
rates. Boundary homogenization (BH) (Ref. 6) is used to
choose the rate for transitions from the wide part of the tube
to the narrow one. Then, following the idea suggested in Ref.
7, we use detailed balance to determine the trapping rate that
describes transitions in the opposite direction.

The suggested 1D description, which is based on the
BH, works quite well when the wide part of the tube is not
too short whereas the length of the narrow part can be arbi-
trary. To show this we consider a particle diffusing in the
tube shown in Fig. 2(a) assuming that the tube ends at x=0
and x=L are perfectly reflecting and absorbing boundaries,
respectively. The particle starts from the reflecting boundary
at x=0 and is trapped at its first contact with the absorbing
boundary at x=L. First, we use the approximate 1D descrip-
tion to derive analytical expressions for the Laplace trans-
forms of the particle lifetime probability density and its
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FIG. 2. Schematic representation of a two-section tube of abruptly changing
diameter [panel (a)]. In the effective 1D description of diffusion in this
tube transitions between the wide and narrow parts of the tube are described
as trapping by partially absorbing boundaries with properly chosen
trapping rates «, and «, [panel (b)]. Dimensionless entropy potential
BU(x)=2 In(b/r(x)). The potential is constant in the wide (0<x</,) and
narrow (I, <x<L) parts of the tube. At x=1,, the potential makes a jump of
the height BAU=2 In(b/a) [panel (c)].
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survival probability as well as the mean lifetime. This is
done in the next section. These predictions are compared
with the results found by solving the 3D diffusion equation
numerically in Sec. IV, where the range of applicability of
the approximate 1D description in the space of the geometric
parameters of the tube is established. In Sec. III we discuss
the relation between the mean lifetime found in Sec. II and
the mean lifetime obtained using the F-J equation. Additional
discussion of escape of a diffusing particle from a cylindrical
cavity through a cylindrical tunnel is given in Sec. V. We
show that the suggested 1D description allows one to de-
velop a theory of this process, which is free from the limita-
tions accepted in the earlier theories. Some concluding re-
marks are made in Sec. VL.

We emphasize that although our analysis below is fo-
cused on one boundary between wide and narrow sections,
our results allow one to construct an effective 1D description
of diffusion in a tube composed of any number of cylindrical
sections of different diameters (Fig. 1).

Il. THEORY

To introduce the idea, in this section we consider an
approximate 1D description of the particle diffusion in a
two-section tube that consists of a wide (w) part of radius b
and length /,, and a narrow (n) part of radius a and length
1, [Fig. 2(a)]. The particle diffusion coefficient in the wide
and narrow parts of the tube is denoted by D,, and D,.
We will assume that the tube cross sections at x=0 and at
x=1l,+1l,=L are perfectly reflecting and absorbing bound-
aries, respectively. The particle starts from the perfectly re-
flecting end of the tube at x=0 and is instantly trapped as
soon as it reaches the perfectly absorbing end at x=L for the
first time. It is assumed that the distribution of the staring
point is uniform over the tube cross section.

In the 1D description the particle propagator satisfies the
free diffusion equation at 0<x</, and [, <x<l[ +I[,=L
and radiation boundary conditions at x=1,, [Fig. 2(b)]. The
boundary trapping rates for the particle approaching the
boundary from the wide and narrow sides of the tube are
different. These trapping rates are denoted by «,, and «,,. Let
G, (x,t) and G,(x,r) be the particle propagator in the wide
and narrow parts of the tube. These functions satisfy

dG,,(x,1) &G, (x,1)
= Dw 3
ot ax

, 0<x<l,, (2.1)

G, (x,1) PG, (x,1)
= Dn 3
ot ox

, [, <x<L. (2.2)

The initial conditions for these functions are given by
G,(x,0)=8x), G,(x,0)=0. The boundary conditions im-
posed on G, (x,r) and G,(x,f) at the tube ends are
9G,,(x,8)/ dx|,_o=G,(L,t)=0. At x=1,, these functions satisfy
the matching conditions that follow from the probability
conservation
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G, (x,1) 3G ,(x,1)
DW = Dn
ox x=I ax x=l

w w

= KnGn(lth) - KwGw(lvvst)- (23)

The first of these two equalities is the flux conservation
while the second establishes the relation between the flux
through the boundary and the probability densities of finding
the particle near the boundary in the wide and narrow parts
of tube.

We describe the entry of the particle to the narrow part
of the tube from the wide part as trapping by a nonuniform
boundary separating the two parts at x=1,,. This boundary
contains a perfectly absorbing disk of radius a located in the
center of the otherwise reflecting cross section of the tube.
An approximate expression for the trapping rate by such a
boundary k, was obtained by means of computer-assisted
BH in Ref. 6(a)

_4D,af(v)

K, 6=
w 7Tb2

, (2.4a)

where f(v) is a function of a single argument, the ratio of the
tube radii, v=a/b. This function monotonically increase with
v from unity to infinity as v grows from zero to unity. A very
accurate approximating formula for this function was sug-
gested in Ref. 6(a)

1+1.37v-0.37v*
(1-17)?2

fv)= (2.4b)

The expression in Eq. (2.4a) shows how «,, depends on the
two radii, a and b, and the diffusion coefficient D,,. As a
approaches b, the radius ratio v tends to unity, and function
f(v) tends to infinity. As a result, the trapping rate diverges,
as it must be since both parts of the tube have the same
radius and the boundary is fictitious. In the opposite limiting
case when a<<b, the radius ratio v tends to zero, and
f(v)=1. As a result, the trapping rate takes the form
k,=4Dal(mb?), which follows from the Berg—Purcell-
Shoup-Szabo theory of trapping by patchy surfaces in the
limit of low patch surface fraction.™

To explain the idea that underlies BH,® consider a steady
flux of particles diffusing in a long tube to a nonuniform
boundary that crosses the tube perpendicular to the tube
axes. The boundary contains an absorbing circular disk lo-
cated in the center of the otherwise reflecting surface of the
boundary. It is assumed that the source of the particles is
sufficiently far away from the boundary. The fields of the
particle fluxes and concentrations are nonuniform over the
tube cross section near the boundary. However, sufficiently
far away from the boundary these fields become uniform and
indistinguishable from those in the case of uniformly absorb-
ing boundary with properly chosen trapping rate. This rate as
a function of the disk and tube radii was found by means of
computer-assisted BH in Ref. 6(a). To do this, the rate was
written as a product of its small-a asymptotic form
4Da/(mwb?), and a dimensionless function f(v), of the radii
ratio v, Eq. (2.4a). Then function f(») was found numerically
and approximated by the expression given in Eq. (2.4b).
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Recently we have used the trapping rate in Eq. (2.4a) to
derive a formula for the effective diffusion coefficient in a
tube separated into identical compartments by infinitely thin
periodic partitiorls.10 Each partition has a circular aperture in
its center, through which a diffusing particle can go from one
compartment to the other. Infinitely thin partitions have an
important specific feature: After a particle has reached the
aperture, it jumps in both compartments separated by the
aperture with equal probability, 1/2. This is definitely not the
case when the thickness of narrow sections is finite. There-
fore, both the particle diffusion in such sections and its tran-
sitions into the wide sections has to be included into explicit
consideration when constructing an effective 1D description.

We use «,, in Eq. (2.4a) and the condition of detailed
balance to find the trapping rate «, that describes transitions
of the particle from the narrow part of the tube to the wide
one. This condition requires of no net flux at equilibrium. In
the case under consideration this means that «,,b*= k,a> and
leads to

2
= Koy = 22013, 2.5)
a ma

As v—0, function f(») tends to unity and one recovers the
expression derived in Ref. 7, k,=4D,,/(ma), that describes
escape of a particle diffusing in a cylindrical membrane
channel into an infinite semispace outside the membrane. In
the opposite limiting case when v— 1 the boundary is ficti-
tious as both parts of the tube have the same radius. In this
case function f(») tends to infinity, and «, diverges as k,,
does. Note that the idea of finding unknown trapping rate,
which describes escape from a cylindrical channel to the out-
side world, using known entrance rate and the condition of
detailed balance was suggested in Ref. 7, where matching of
the approximate solutions found in the two regions was used
to justify this idea.

To check the accuracy of the suggested 1D description
and to establish the conditions of its applicability we com-
pare the particle survival probability, its lifetime probability
density, and the mean lifetime found in the framework of the
1D description and obtained by solving the 3D diffusion
equation numerically. The Laplace transformation method is
used to solve the 1D diffusion equations, Eqgs. (2.1) and
(2.2). After the Laplace transformation these equations take
the form

dz(A}W(x,s)

=5G,(x,5) - 8x), 0<x<I,  (2.6)

Y dx?
dzén(x,s) A
DnT =5G,(x,s), [,<x<L, (2.7)
X

where f(s) is the Laplace transform of function f(7),

f(s): Joexp(=st)f(#)dt. The boundary conditions imposed on
the solutions of Egs. (2.6) and (2.7) are

déw(x,s)

=G,(Ls)=0
| =G

(2.8)

and
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déw(x,s) dé,,(x,s)
Y dx ler T dx lew
= 6,G(ly) = 1, Gy(l8). (2.9)
The solutions are given by
A s
G, (x,5)=A cosh(x 1/ —)
D,
. S
+B smh(wa—), 0<x<l|,, (2.10)

G,(x,s)=C sinh((L—x) \/Di>, I, <x<L, (2.11)

where A, B, and C are functions of the Laplace parameter s
that can be found using the boundary conditions, Egs. (2.8)
and (2.9). These functions satisfy a set of linear equations
solving which we obtain

—
. i 7 r ~ K, . ~ VDW ~
sinh [,, cosh [, + | Vs cosh [, + ——=sinh [, | —cosh [,

A= \'Dn Ky,
- \sD,,F(s) ’
(2.12)
Beo—— ot (2.13)
- V/s_w7 - \/EF(S) ' .

where I, =1,\s/D,, 1,=1,\s/D,, and function F(s) is given
by

F(s) =cosh 1, cosh ,

[
/

s K} . ~\V . T
+ (\g cosh [, + —==sinh ln>—wsmh L.
\D, k

w

(2.14)

Expressions in Egs. (2.10)—(2.14) provide a solution for the
particle propagator in the wide and narrow parts of the tube.
We use these results to find the Laplace transforms of the
probability density of the particle lifetime and its survival
probability as well as the mean lifetime.

The survival probability of the particle, S(¢), and its life-
time probability density, ¢(z), are given by

L, L
S(r) = J G, (x,1)dx + f G, (x,t)dx (2.15)
0 Iw
and
ds(t) G, (x,1)
f)=———"=— e 2.16
o)== =D, T 2.16)

Using the solution for the Laplace transform, the propagator
we obtain

1

@(s)=——~

o (2.17)

and
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l—g@(s)_F(s)—l

S(s) = sF(s)

(2.18)

Finally we find the mean lifetime 7, using the relation
7=5(0). This leads to
2 v, L, B

T=_—"—

+ + o+ ,
2D,, 4aD.f(v) ma°D, 2D,

(2.19)

where V,,=mb?l,, is the volume of the wide part of the tube.

The results in Egs. (2.17)—(2.19) show how ¢(s), S(s),
and 7 depend on the geometric parameters of the tube and the
diffusion coefficients D,, and D,. When the two parts of the
tube are identical, i.e., a=b and D,=D,, these results reduce
to known results for a cylindrical tube of length L=1[,+1,,
which are independent of the tube radius. We will see that
the theoretical predictions obtained on the basis of the 1D
description are in excellent agreement with the numerical
results when the wide part of the tube is long enough.

Although this section is focused on trapping of the par-
ticle diffusing in a two-section tube, the same approach for-
mulated in Egs. (2.1)—(2.5) can be used to describe diffusion
in a tube composed of any number of cylindrical sections of
different diameters. These equations are one of the main re-
sults of the present paper.

In conclusion, to avoid confusion we discuss the relation
between the mean lifetime in Eq. (2.19) and the mean time
(74e) given by Eq. (3.5) in Ref. 11, which is devoted to dif-
fusion in cylindrical tubes with identical periodic dead ends.
(74e) is the mean time lost for diffusion along the tube axis
when the particle enters a dead end. The authors of Ref. 11
called this time “the mean particle lifetime in the dead end.”
Later the authors used this mean lifetime when discussing
nonmonotonic dependence of the effective diffusion coeffi-
cient in a tube with dead ends on the radius of the diffusing
particle,12 which is a violation of the Stokes—Einstein rela-
tion. In Ref. 11 the expression for (7,.) is derived in two
steps. First, the authors derive an approximate formula for
the Laplace transform of the probability density of the par-
ticle lifetime in the dead end, @4(s), which is given by Egq.
(2.11) in Ref. 11. Then they find {7,.) using the small-s ex-
pansion, @g.(s)=1—(74)s, s—0. This leads to

Vde
4Da’

(Tge) = (2.20)
where V. is the dead end volume, D is the particle diffusion
coefficient in the tube, and a is the radius of the circular
aperture connecting the tube and the dead end, which is as-
sumed to be much smaller than the tube radius R, and the
distance [ between neighboring dead ends.

The theory developed in Ref. 11 assumes that the par-
ticle approaching the border between the dead end and the
tube from the dead end side sees this border as a partially
absorbing boundary with a properly chosen trapping rate.
This is quite in contrast with the perfectly absorbing bound-
ary condition, Eq. (2.8), which we have used when deriving
the result in Eq. (2.19). There is another fundamental differ-
ence between the problems considered in Ref. 11 and ana-
lyzed above. We consider the case when the particle starts

Downloaded 11 Dec 2009 to 128.231.5.166. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



224110-5 Diffusion in a tube of varying diameter

from the reflecting boundary located at distance L from the
perfectly absorbing boundary, whereas the authors of Ref. 11
consider the particle that enters a dead end, i.e., it starts from
the partially absorbing boundary separating the dead end
from the tube. Thus, it is natural that the two mean lifetimes,
Egs. (2.19) and (2.20), are quite different.

lll. DISCUSSION

It is interesting to compare the results obtained in the last
section with those obtained using the F-J equation.1 Keeping
in mind that in the case under consideration r’(x)=0 at all x
except one point x=1[,, we neglect variation in D(x) in the
generalized F-J equation and take D,,=D,=D. Then the gen-
eralized F-J equation reduces to the regular one,! and the
propagator G(x,t) satisfies

dG(x,1) a9 aJ G(x,1)
Jt =Dax{A(x) { ” G

ox| A(x)

where A(x)=m]r(x)]*> is the tube cross-section area at
given x. This equation can be written as the Smoluchowski
equation

dG(x,1) 9

D—{e‘ﬁu()‘)i[eBU(x)G(x, t)]} (3.2)
x

ot ox

that describes diffusion in the entropy potential U(x) defined
as

A(x) ]

U(x) =—kgT ln[A(xO)

(3.3)
where kg and T are the Boltzmann constant and the absolute
temperature whereas B=1/(kzT). It is assumed that U(x) is
counted from its value at x=x, i.e., U(xy)=0.

In the geometry shown in Fig. 2(a) the tube area changes
abruptly from A(x)=wb> at 0<x<I, to A(x)=ma’> at
[, <x<L. As a consequence, the entropy potential is a step
function that makes a step of height AU

b
AU = 2kyT In- (3.4)
a
at x=1,,. This entropy potential is shown in Fig. 2(c) assum-
ing that U(x)=0 in the wide part of the tube. In this case

the F-J equation reduces to the free diffusion equation at
0<x<l, and [, <x<L

dG(x,1) PG(x,1)
=D—3.
at ox

(3.5)

At the boundary separating the two parts of the tube, the
propagator satisfies the flux conservation requirement that
leads to

dG(x,t)
ox

_ dG(x,1)
x=lw—§ ox

: (3.6)

x=l, +5

where 6 is an infinitely small positive increment, as well as
the condition
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2
a
G0 mt v5= € PAVG (1) oy —5= EG(X’INZW—& 3.7)

that determines the jump of the propagator due to the jump in
the entropy potential (the tube cross-section area). In addi-
tion, the propagator satisfies the reflecting and absorbing
boundary conditions at the ends of the tube JdG(x,1)/dx|,_o
=G(L,1)=0, and the initial condition, G(x,0)=&(x).

Solving Eq. (3.5) by the Laplace transformation method
one can find the Laplace transforms of the propagator, the
lifetime probability density, and the survival probability, as
well as the mean lifetime of the particle as functions of the
geometric parameters of the tube. We restrict ourselves to
comparison of the mean lifetimes predicted by the two 1D
descriptions. The expression for the mean lifetime obtained
in the framework of the BH based approach, Eq. (2.19), at
D,,=D,=D can be written as

1 :
=— 12,+12+21,l—+—w> 3.8
TBH ZD( w n w I’IQQ Zaf(v) ( )
while the F-J equation based approach leads to
1 b?
=— 12+z2+211—>. 3.9
TE-J ZD( w n w na2 ( )

The difference between the two mean lifetimes is given by

V

F]V;(V). (3.10)

TBH ~ TR =
As a—b [v—1, and f(v) diverges], the difference vanishes
since both mean lifetimes reduce to that in the uniform cy-
lindrical tube of length L=1[,+1,. At a<b (v<1, f(v)=1)
the difference takes the form

V

W
TBH ~ TR = 4_

, a<<b.
Da

(3.11)
One can see that this difference considerably exceeds 7y,
Eq. (3.9), when the narrow part of the tube is short, ,<a,
and the wide part is not too long, I, <b?/a.

Comparison shows excellent agreement between 7y and
the mean lifetimes obtained by solving the 3D diffusion
equation numerically over a broad range of values of the
geometric parameters of the tube including those, for which
the difference between 7y and 73y cannot be neglected. This
implies failure of g that is not surprising since the reduc-
tion to the F-J equation is justified only in tubes of slowly
varying diameter, |r'(x)| <1, i.e., in the case which is oppo-
site to the one considered in the present paper.

IV. NUMERICAL TEST

To test the two approximate 1D descriptions discussed
above we compare 7gy and 7g; with the mean lifetime
found by solving the 3D diffusion equation numerically
using the finite difference method. We assume that D,,=D,,
=D and choose a and a?/D as units of length and time, i.e.,
we take a=D=1. In Fig. 3(a) we show the results for
(1=12/2—12/2)/V,, considered as a function of v=1/b for
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FIG. 3. Numerical test of the theory. We take a=D=1, i.e., we use a and
a*/D as units of length and time. As a consequence, »=1/b. In panel (a),
solid curves show the v-dependence of function (TBH—li,/Z—li/Z)/ Vi
which is given by [,/ 7+ 1/[4f(v)] independently of /,,, Eq. (4.1). The curves
represent the function at 7,=5,2,1 (from top to bottom). As v—1,
f(v) =, and (mgy=12/2-12/2)/V, approaches (7 —12/2-12/2)/V,,
which is equal to [,/ 7 for all », 0<v<1, Eq. (4.2). Symbols are numerical
results for (7—12/2-12/2)/V,, at the same [, and [,,=2 (circles), /,,=5 (tri-
angles), and /,,=10 (squares). In panel (b), solid curves are the survival
probabilities S(7) and the lifetime probability densities ¢(7) (inset) obtained
by numerically inverting the Laplace transforms S(s) and @(s) given in Eqs.
(2.18) and (2.17) at /,,=b=5 and [,=1,5 (D,,=D,=1). Symbols are numeri-
cal results: triangles for /,=1 and circles for /,=5.

1,=2,5,10 and [,=1,2,5. (The case of /,=0 is discussed at
the end of this section.) Using Egs. (3.8) and (3.9) one can
obtain

( L E)L_l_n+ ! @
Y R '
and
P 12>1 l
) 4.2
(TF-J 2 2)v, T & (4.2)

Note that in both cases the right-hand side is independent of
the length of the wide part of the tube, /,,. Function f(»), Eq.
(2.4b), monotonically increases with v from unity at v=0 to
infinity at v=1. As a result, as v increases from zero to unity,
the right-hand side of Eq. (4.1) monotonically decreases
from (I,/7+1/4) to 1,/ . The latter is equal to the right-
hand side of Eq. (4.2), which is independent of the radii ratio
v. In Fig. 3(a) the v dependences predicted by Eq. (4.1) are
shown by solid curves. One can see that these dependences
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FIG. 4. Conditional boundaries of the domains of applicability of BH for
two different initial conditions: uniform distribution of the particle starting
position over the entire cross section (triangles) and over the circular patch
of radius 0.1 located at the center of the boundary (circles). For /,, above the
boundary the relative error of the theoretically predicted mean lifetime is
less than 5% assuming that the lifetime found numerically is exact. The
radius of the absorbing disk, a, is taken as the unit of length. As a conse-
quence, v=1/b.

are in excellent agreement with the numerical results shown
by symbols.

In Fig. 3(b) we compare theoretically predicted S(r) and
o(r) (solid curves) with those obtained numerically (sym-
bols). This is done for /,,=b=5 and [,=1,5. The solid curves
are obtained by numerically inverting the Laplace transforms
of ¢(s) and S(s) given in Egs. (2.17) and (2.18). Again one
can see excellent agreement between the theoretical predic-
tions and numerical results.

The results presented in Fig. 3 show that the approach
suggested in Sec. II provides an effective 1D description of
diffusion in a tube of abruptly changing diameter. The key
step of this approach is homogenization of the boundary that
separates the wide part of the tube from the narrow one. The
BH fails when the wide part is not long enough since in such
a case the radial distributions are not uniform over the cross
section of the tube.

To establish the range of applicability of BH we
compared the mean lifetimes predicted theoretically and
found numerically in the special case of /,=0. For each v,
v=0.05,0.1,0.2,0.3,...,0.9, we determined the value of [,
starting from which the relative error of the theoretically pre-
dicted mean lifetime was less than 5%, assuming that the
mean lifetime found numerically was exact. We used these
values to split the semi-infinite strip, 0<v<<1,0</,, into
two domains based on the criteria whether BH is applicable
or not. As the criteria of applicability of BH we took the
requirement that the relative error did not exceed 5%.

The boundaries separating the two domains are shown in
Fig. 4 for two initial distributions of the particle starting
position on the reflecting boundary of the tube at x=0: uni-
form distribution over the entire boundary and uniform dis-
tribution over a circular patch of radius 0.1 located at the
center of the boundary. The solid curve going through the
dark triangles is the boundary separating the domains when
the initial distribution is uniform over the entire tube cross
section while the curve going through the light circles is the
boundary in the case of the uniform distribution over the
patch. As might be expected, the boundaries have the bell-
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shaped form, and the domain where BH fails is broader when
the distribution of the starting points is nonuniform over the
cross section of the tube.

V. ESCAPE FROM CYLINDRICAL CAVITY THROUGH
CYLINDRICAL TUNNEL

We have discussed escape of a diffusing particle from a
cylindrical cavity through a cylindrical tunnel when (i) intro-
ducing the ideas that underlie the suggested 1D description
(Sec. 1I), (ii) comparing the new 1D description with that
based on the F-J equation (Sec. III), and (iii) testing the new
1D description numerically (Sec. IV). In this section we dis-
cuss the advantages of the theory of the escape kinetics based
on the suggested 1D description. All earlier theories'> ™' of
escape from a cavity, not necessarily cylindrical, through a
cylindrical tunnel assume that the intracavity relaxation is
much faster than the escape and, therefore, can be neglected.
The most general theory of this type, which contains the
earlier theories'>™" as special cases, is developed in Ref. 16,
where one can find detailed discussion of the earlier theories.
The suggested 1D description allows us to generalize the
results obtained in Ref. 16 in two respects. First, we can
include the intracavity relaxation into explicit consideration.
Second, we can relax the assumption of narrow tunnel and
study the kinetics at an arbitrary tunnel radius.

The formal difference between the approach to the es-
cape problem based on the suggested 1D description and the
one used in Ref. 16 becomes clear if one compares the equa-
tions lying in the heart of the two approaches. These equa-
tions are Egs. (2.1) and (2.2) above, and Egs. (5) and (6) in
Ref. 16, respectively. Both approaches describe the particle
motion in the tunnel as 1D diffusion along the tunnel axis,
Eq. (2.2) and Eq. (5). The difference lies in how they de-
scribe the particle motion in the cavity, Eq. (2.1) and Eq. (6).
The suggested approach describes this motion as 1D diffu-
sion along the axis of the cylindrical cavity, Eq. (2.1),
whereas the approach of Ref. 16 does not consider the intra-
cavity dynamics at all. Instead, it simply postulates a single-
exponential distribution of the particle lifetime in the cavity,
Eq. (6).

The formula for the mean life of a particle that starts
from the cavity, derived in Ref. 16, can be written as (we use
the notations introduced in Sec. II)

2
= VW + li’l ;/W + l_n .
4aD,, ma°D, 2D

n

(5.1)

A distinctive feature of this mean lifetime is that it is inde-
pendent of the shape of the cavity and depends only on its
volume, V,,. One can obtain this result from the formula for
the mean lifetime in Eq. (2.19) by omitting the first term
and taking f(v)=1 in the second term. The expression in
Eq. (5.1) provides a good approximation for the mean life-
time when the parameters a, b, and [, satisfy a<<b and
l,<b?/a, i.e., when the tunnel is narrow and the cavity is
not too long. When these conditions are not fulfilled the as-
sumption of fast intracavity relaxation fails, and one has to
use more general formula, Eq. (2.19).
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The assumption fails when the tunnel radius a, ap-
proaches the cavity radius b, and the tunnel is not narrow. In
this case f(v) — o, and the second term in Eq. (2.19) can be
neglected. As a result, we obtain

Lo LV, L

+ + . 5.2
2D,, ma’D, 2D, (5-2)

In contrast to Eq. (5.1), this expression for 7 contains not
only the cavity volume V,, but also the length of the cavity
l,,. Thus, Eq. (5.2) gives the mean lifetime as a function of
the cavity shape, which is completely determined by its
length and volume.

The assumption of fast intracavity relaxation may fail
even when the tunnel is narrow, i.e., a<<b and f(v) = 1. This
happens when the cavity is long enough so that its length
satisfies /,,> b?/a. Under such conditions the intracavity re-
laxation is a slow process, and the mean lifetime is also
given by Eq. (5.2) since the second term in Eq. (2.19) is
much smaller than the first one.

It should be pointed out that Eq. (2.19) has been derived
assuming that the particle starts from the perfectly reflecting
end of the cavity. One can repeat the derivation and obtain
the results for an arbitrary starting point of the particle in the
system. For example, when the particle starts in the cavity at
distance [, from the wall containing the tunnel entrance,
lpy=1,, the mean lifetime is given by

10(21W - lO) Vw anw li
T= + + 5 .
2D, 4aD,f(v) ma°D, 2D,

(5.3)

This expression reduces to that in Eq. (2.19) at [y=1,,. Thus,
the effective 1D description allows one to analyze the kinet-
ics as a function of the particle initial position.

Concluding this section we note that the model of a dif-
fusing particle escaping from a cavity through a tunnel has
been proposed and used when discussing escape of signals
from dendritic spines, which are small, micrometer in size
protrusions on dendrites. It is believed that dendritic spines
are important for communication between nerve cells, since
the majority of excitatory synapses in the brain are on spines
rather than dendrites. Cells use spines as cites where suffi-
ciently high concentrations of signals can be generated and
kept long enough to initiate signaling cascades. Therefore,
the signal lifetime in the spine is an important parameter.
Several factors may affect the fate of a signal diffusing in the
spine. These factors, in addition to the spine geometry, in-
clude reversible binding of the signal to buffers and intrac-
ellular stores, hydrodynamic effects due to the signal inter-
action with the crowded intracellular environment, spine
motility, as well as escape through different pumps located
on the spine walls. One can find interesting discussion of
different aspects of the signal life in a dendritic spine as well
as a good bunch of useful references in Ref. 17.

VI. CONCLUDING REMARKS

We have suggested an effective 1D description of diffu-
sion in a tube of abruptly changing diameter, Egs.
(2.1)—(2.5). Sufficiently far away from the boundary between
wide and narrow sections the particle probability density is
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uniform over the tube cross section. This condition violates
near the boundaries. Therefore, the major difficulty is in the
formal description of the particle transitions across the
boundaries. We describe these transitions by means of Eq.
(2.3) that establishes the relation between the flux through
the boundary and the probability densities of finding the par-
ticle on the two sides of the boundary. The relation in Eq.
(2.3) contains two rates, k,, and «,, given in Egs. (2.4a) and
(2.5). The former was obtained by BH in Ref. 6(a) while the
later is obtained from the former and the condition of de-
tailed balance (no flux across the boundary at equilibrium).

A great advantage of BH is that it allows one to avoid
solving the problem of nonuniform distribution near the
boundary. Instead, one has to deal with an effective distribu-
tion, which is assumed to be uniform over the cross section
everywhere, and properly chosen boundary condition that re-
places the nonuniform boundary. BH is applicable only when
the domain, where the distribution is nonuniform over the
cross section, is relatively short. As a consequence, the sug-
gested 1D description is not universal, and restrictions on the
domain of its applicability must be imposed. Our analysis
has shown that this description can be used when the lengths
of the wide sections of the tube exceed their radii while the
lengths of the narrow sections can be arbitrary.

The suggested 1D description of diffusion can be used in
a tube composed of any number of cylindrical sections of
different diameters. This description complements the 1D de-
scription, which is based on the generalized F-J equation.
The latter is applicable when the tube cross section changes
smoothly, whereas the former is applicable when the cross
section changes sharply. The question naturally arises how to
construct an effective 1D description when both smooth and
abrupt changes of the tube diameter occur. This description
can be used to analyze diffusion, say, in a periodically taper-
ing tube discussed in the context of controlled drug release.'®
A possibility of making nanotubes of periodic conical struc-
ture has been demonstrated recently.19

An important advantage of the reduction to an effective
1D description is that one can use this description to analyze
multidimensional problems that are intractable in the initial
formulation. One example has been discussed in Sec. V. An-
other example is the problem of effective diffusion coeffi-
cient D,y that describes diffusion in a tube of alternating
diameter, discussed in Ref. 20. Solution to this problem in
the special case when the narrow sections are infinitely thin
(diffusion in a tube separated into compartments by infinitely
thin periodic partitions) has been published recently.lo As
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discussed in Sec. II, the problem becomes much more com-
plicated when thickness of the narrow sections of the tube is
finite. The effective 1D description introduced in the present
paper allows us to find D at arbitrary thickness of the nar-
row sections on condition that the length of the wide sections
exceeds their radius.”’
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